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Abstract—An empirical algorithm for the retrieval of soil moisture content and

surface Root Mean Square (RMS) height from remote.ly sensed radar data was developed

using scatterorneter data. The algorithm is optimized for bare surfaces and requires two

co-polarized channels at a frequency between 1.5 G1lz and 11 GHz. It gives best results
for kh <2.5, p, < 35% and 0230°

Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive

to system cross-talk and system noise, simplify the calibration process and adds

robustness to the algorithm in the presence of vegetation. However, inversion results

indicate that significant amounts of vegetation (NDVI > 0.4) cause the algorithm to

underestimate soil moisture and overestimate RMS hc.ight.  A simple criteria based on the
@v/cJ~v ratio is developed to select the areas where the inversion is not impaired by the

vegetation.

The inversion accuracy is assessed on the original scatterometm data sets but also on

several SAR data sets by comparing the derived soil moisture values with in-situ
measurements collected over a variety of scenes between 1989 and 1994. Both

spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large

sample of conditions, the RMS error in the soil moisture estimate is found to be less than

3.5% soil moisture.
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1. INTROIIUCT1ON

A key element to understanding the nature of global change is the ability to model the

two-way interaction between land and atmosphere. Perhaps the most important role that

the land surface component performs is the partitioning of incoming radiative energy into

sensible and latent heat fluxes. There have been a number of modeling studies that have

demonstrated the sensitivity of soil moisture anomalies to climate [ 1 ,2]. Shukla

(personal communication) for instance, reports that soil moisture is the second most

important forcing function, second only to the sea surface temperature in the nlid-

latitudes, and it becomes the most important forcing function in the summer months.

The role of soil moisture is equally important at s]naller scales. Recent studies with

mesoscale  atmospheric models have similarly demonstrated a sensitivity to spatial

gradients of soil moisture. For example, Fast et al. [3] has s}]own that moisture gradients

can induce thermally induced circulations similar to sca breezes. Chang  and Wetzel [4]

have concluded that the spatial variations of vegetation and soil moisture affect the

surface baroclinic  structures through differential heating which in turn indicate the

location and intensity of surface dynamic and thermodynamic discontinuities  necessary to

develop severe storms. In yet another study, Lanicci  ct al [5] have shown that dry soil

conditions over the southern Great Plains can dynamically interact to alter pre-storm

conditions and subsequent convective rainfd]  patterns. More recently, 13etts  et al. [6]

demonstrated that the initialization of the Global Climate Model Weather Forecast (GCM

WF) weather predictions with current soil moisture values can leacl  to improved rainfall

predictions.

In addition to the role of soil moisture in the interactions between the land surface and

the atmosphere, soil moisture is a storage of water timewise  between rainfall and

evaporation that acts as a regulator to one of the more fundamental hydrologic processes,

infiltration and runoff production from rainfall and w}~ich must be accounted for in any

water and energy balances.

Active microwave data has been shown to depend on several natural surfi~ce

parameters such as dielectric constant [7,8] and surface roughness [9]. The dielectric

constant is highly dependent on soil moisture due to the large difference in dielectric

constant between dry soil (typical dielectric constants of 2-3) and water (dielectric

constant of approximately 80). Estimating soil moisture from active microwave data has

received much attention lately, The feasibility of the inversion has been demonstrated
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in [ 10] for scatterometer data. Because of characteristic high resolution combined with

potential global coverage, spaceborne SAR can provide a unique perspective on the

spatial and temporal variation in soil moisture both at a relatively high resolution (e.g.,

gradient of moisture within a field or along the slope of a hill) and at a global scale

(features of the order of 10 km). Furthermore, the increased number  of SAR systems

(AIRSAR, E-SAR, ERS- 1, JERS-1 and SIR-C) togetlier with their good calibration

performance has made SAR data more readily available for the quantitative retrieval of

soil moist ure.

Theoretical models can predict the general trend of radar backscatter  in response to

changes in roughness or soil moisture reasonably well; however, they can rarely be used

to invert data measured from natural surfaces, mainly because of their complexity or the

restrictive assumptions made when deriving them.

To circumvent the difficulties in applying theoretical models to data measured from

natural surfaces, an empirical model was developed to infer soil moisture and surface

roughness from radar data. In developing this algoritlu-n, several goals were set:

1) The algorithm should be applicable to as wide a data set as possible

2) The calibration requirements on the data created by the algorithm should be practical.

3) The algorithm should be applicable in the presence of low vegetation.

To address the first (and to some extend t}w second) goal, we developed the algorithm

using ground based scatterometer data from the LCX IIOLARSCA’1’  [11], and the

RASAM systems [ 12]. The variety of sources of training data, with their accompanying

differences in calibration accuracies, adds robustness to the algorithm and makes it more

applicable to other data sets. The second and third goals  dictated the use of only co-

polarized backscatter coefficients. These signals are ICSS sensitive to system noise and

cross-talk than the weaker cross-polarized returns. Also, co-polarimd returns are easily

calibrated using a variety of calibration targets and devices; something that is not

generally true for cross-polarized returns. Finally, the co-polarized returns are affected

less by the presence of the vegetation than the cross-polarized terms, providing increased

robustness.

The accuracy of the inversion technique is assessed for bc)th scatterometer  data and

Synthetic Aperture Radar (S AR) (e.g., AIRSAR  and SIR-C) data by comparing soil

moisture obtained with the inversion technique to in situ measurements over bare

surfaces. In the case of the imaging radar data, the algorithm was founcl  to underestimate
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the soil moisture in the presence of vegetation. To cil cumvent  this problem, a SAR

vegetation index is used to automatically eliminate the heavily vegetated areas where the

inversion results are not reliable. The SAR vcgetatioli  index is shown to correlate

positively to the well-known Normalized Difference Vegetation lnclcx (NDVI).

11, EXPERIMENTAL DATA AND MODEL DESCRIIYI’lON

Two sources of experimental data were used in the derivation of the empirical model.

The university of Michigan’s LCX POLARSCAT is a truck-mounted network-analyzer-

based scatterometer  operating at three frequencies 1.25,4.75 and 9.5 GIIz. A complete

description of the instrument can be found in [11], Tlte POLARSCAT data set [ 10] used

in this study includes the co- and cross-polarized (hh, vv and hv) backscatters for four

surfaces. At least ten roughness profiles were acquired over each c)f the four surfaces by

using a laser profilometer  mounted on an X-Y table with a 2,5 mm horizontal resolution

and a 2 mm vertical accuracy over a length of 1 mete]. Using these surface profiles, a

RMS height was computed for each of the four surfaces. The university of Michigan

team also measured the dielectric constant of the soil surfaces using a C-band field-

portable dielectric probe (PDP) [13] at the top surface and at a depth of 4 cm. The
dielectric constant (E) was converted to volumetric soil moisture ( ~tv ) through a set of

empirical curves [ 14]. An average value representing, the soil moisture for the O-4 cm

layer was computed and the soil density was determined from soil samples with known

volumes. The data set consists of measurements ovel four sur~~ces with RMS height

varying from 0.32 cm to 3.02 cm. The resulting electromagnetic roughnesses cover a

wide range of value from kh = 0.1 to kh = 6.01 (where k = 27c/A is the wave number, A

is the wavelength and h is the RMS height). For each surface, two wetness states were

studied: a relatively dry condition with volumetric soil moisture ranging from 0.14 to

0.19 and a relative] y wet condition with volumetric soil moisture ra~}ging from .20 to .31.

The scatterometer measurements were acquired every 10° between 10° and 70°. Table 1

summarizes the ground truth for the POLARSCAT d:ita.

The university of Berne’s  RASAM is a truck-mounted radiometer-scatterometer with

the scatteromcter system operating at six frequencies between 2.5 G117 and 11 G}lz. A

complete description of the instrument can be found in [15 ]. “1’hc RASAM data set [12]

includes measurements of the hh, VV, hv and vh-pola~  ized backscattering  coefficients

over a variety of surpaces.  Only bare surfaces were selected for this stucly. Among bare

surfaces, furrowed fields were excluded to avoid the significant enhanced scattering

occurring when the furrows are almost perpendicular to the plane of the incident
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electromagnetic wave [16, 17] (the angle between the. radar incident plane and the

furrows was not available in the report). For each field, seveml surface profiles were

acquired with a laser profilometer [18] with a horizontal spacing of 0.5 mm and a vertical

accuracy of 0.1 mm. A surface RMS }Ieight  is derived from these profiles after proper

detrending. Furthermore, gravimetric  soil samples at]d soil density measurements were

collected to characterize the volumetric soil moisture corresponding to the O-4 cm top

soil layer. ‘I’he gravimetric sand fraction and clay fraction were also determined. The

selected RASAM data set consists of measurements over eight surfidces  with RMS height

varying from 0.57 cm to 1.12 cm. The resulting electromagnetic rough nesses cover

values ranging from kh = 0.3 to kh = 2.6. The vo]umctric  soil moist me ranges from 0.17

to 0.28. The backscatter measurements were made every 10° between 30° and 60°.

Table 2 summarizes the bare surface characteristics.

Using these two data sets, an empirical model was derivecl  to describe the co-

polarized backscatter coefficients of bare surfaces as a function of surfi~ce  roughness,

dielectric constant, incidence angle and frequency. Tile dielectric constant is the

parameter sensitive to volumetric soil moisture, The Ilh-polarized  and vv-polarized
backscattering  coefficients cr~h and @V were empiricfilly  found to follow these two

equations:
1.5

CJL  =
, ()-2.75 COS e s 100”28cuno(~~sin~)142,07

sin 0

(1)
3

235 COS 03 ~ oO.468tmO:”=lO-. ‘(khsin (?)’”’ A07
sin O

where 0 is the incidence angle, ~ is the real part of the dielectric constant, h is the RMS

}~eight of the surface, k is the wave number and A is the wavelength in cm. These two

relations are valid for frequencies varying between 1.5 and 11 GIIz, for surfaces with

roughness ranging from 0.3 to 3 cm RMS height (the Iiinge of the training data set) and

for incidence angle between 30° and 65°.

The gencrd  backscatter behavior with roughness is similar to the trend predicted by

the small perturbation model and the physical optics model [19]. The backscatters

decrease with increasing incidence angle and with decreasing roughness. The small

perturbation model predicts the following hh - and vv-polarized  b:ickscatter:

C&= 8k4h2 COS
4 (3 kV(2ksin 0) la~A(0)12

(2)
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o~, = 8k4h2 cos4 O l!’(2ksin O) lavv(0)12

(3)
(E - 1)(8(1+sin20) -sin20)

a“” (e) = -— .— -

(co=iz-<in~e~

where W is the surface roughness spectrum.

In the case of an exponential correlation function, the roughness spectrum W takes

the following form:

W(2k sin 0) = ~–----—-—lP—----
271 (] +4k2si]]2  o ~’)’”

(5)

where 1 is the correlation length of the surface.

When 2k sin O >>1, (5) can be written as:

W(2ksin  0)s -~– –-T1—
2n  8k l s i n30

It results that:

(6)

In both the empirical model and the small perturbiition  model, the RMS height of the

surface is introduced via the khsin  O factor which is the dimensionless form of the

projected roughness on the wave incident plane. The power of this parameter in the
empirical model (1.4 and 1.1 for respectively cr~~ and cr~y ) is C1OSC to the power 1 for

both o’~~ and @V in the case of the small perturbation model with m exponential

correlation function.



Note that the model described in (1) does not follow the SPh4 model even in the case

of very smooth sufidces:  Our expressions in ( 1 ) do predict that as the roughness
increases, the ratio cr~ /o-~V will also increase due to the difference. in the power of

kh sin O whereas the SPM model results in a cr~h/o~v ratio that does not depend on the

roughness. This increasing trend is to be expected considering that very rough surfaces

have the same backscatter at }lh and vv-polarizations  ficcording to the geometrical optics
model. 1 lowcver,  we note that for very large values of kh sin O, o~~ will become larger

than o~v, contrary to what is predicted by most theoretical models (except Physical

Optics model) and contrary to what has been observed on SAR data. Restricting the
validity of the model to khs 2.5 and O 2 30 °will  ensure that (he 0~/cr~, ratio is always

less than 1 in agreement to what is observed in the data. Until more data becomes

available, we are unable to refine ( 1 ) to describe the backscatter of rougher surfaces at an

incidence angle smaller than 30°. We note, however that the natural surfaces that we

app] y the algorithm to, rarely exceed kh = 2.5 (corresponding for 1.-band to a RMS

height of 10 cm)

In (1), the backscatters as well as the cr~A/o~v  decrease with increasing dielectric

constant. Furthermore, because of the tan 0 multiplicative fidctor, the clielectric constant

has a weaker effect at smaller incidence angles. These.  trends are qualitatively in

agreement with both the small perturbation model and the physical c)ptics  model.

111. SCATI’EROMETER RESUL’1’S

From the Ojh and cr~v measurements and the empirical model described in (1), one

can easily compute the relative clielectric  constant of the soil E, and the RMS height of

the surface h. The conversion from dielectric constant to volumetric soil moisture is

done using a set of empirical formulas [ 14] describing how the dielectric constant varies

with soil texture. Figure 1 presents the values of sc)il lnoisture and surface roughness

estimated from the backscatter  values versus the in-situ measurements for the

POLARSCAT data. Each point on the plot corresponds to one surface and one wetness

condition where the soil moisture (RMS height) is the average soil moisture (RMS

height) estimated over the different incidence angles and different frequencies. “1’he

straight diagonal line describes a perfect inversion algorithm where the estimated values

match exactly the measured values. Deviations away from this line are errors. The RMS

errors are 4.5% for the estimates of soil moisture and 0.34 cm for the estimate of the

RMS height.
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IV. EFJ:ECf’S O1; VEGE’rATION

The accuracy of the inversion when applied to other datasets depends on two factors:

1) The presence of vegetation 2) the calibration of the radar system. These two effects

are investigated in the following paragraphs.

The inversion method was derived from data collected over bare surfaces. It relies on

the co-polarized channels and does not use the cross-] polarized  channels. This has several

advantages. The first advantage is that the co-polarized channels can be calibrated

directly with passive targets like corner reflectors, The cross-polarized channel

calibration is usually derived from measurement of the co-polarized channels [20] and as

a result is less accurate than the calibration on the co-polarized channels. The second

advantage is the usually higher signal-to-noise ratio in the co-polarized channels than in

the cross-polarized channels. Finally, vegetation is known to have a relative strong effect

on the cross-polarized channel [21,22]. One of the main effects of vegetation is to

introduce a VOILJIlle  scattering term in both the co- ancl the cross-polarized channels. This

effect is relatively large for the cross-polarized channel. It can therefore be expected that

an inversion algorithm relying on the co-polarized channels will be more robust to

presence of vegetation than one relying on both the cross and the co-polarized channels.

Nevertheless, for a significant amount of vegetation, the backscatter of the vegetated
surface is higher than that of a bare surface and the O~/O~v ratio is closer to 1. The

expressions in (1) predict that the higher backscatter  caused by the vegetation can be

interpreted as either an increase in roughness or an increase in dielectric constant.

I lowever, an increase in the dielectric constant would correspond to a decrease in the
a~~ /cr~,  ratio whereas vegetation causes an increase in the cc)-polarized  ratio. Therefore,

the presence of vegetation will result  in an overestimated surface rollghness  and an

underestimated soil moisture.

Active microwave sensors have been shown to be a good discriminator for biomass

[21], This capability can be used to select the areas with low vegetation cover where the
inversion can be applied. In Figure 2, the L-band O~V/cr~v ratio image of data acquired

over Chickasha,  Oklahoma is presented together with a SPOrl’ derived Normalized

Difference Vegetation Index (NI>VI)  image [23,24] over the same area. Overall, a pixel-

to-pixel comparison between the two indices provides the regression curve plotted in

Figure 3. This curve shows that the L-bnnd  parameter does not have a good sensitivity to

vegetation with NDV1 below 0.2. This indicates that when the vegetation is very sparse,

the scattering at L-band is dominated by interactions with the underlying surface and not
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with the vegetation. The regression curve stops at NI JVI 0.6 because few pixels in the

SPOT image exceed 0.6. As expected, the correspondence between the two indices is

noisy with a wide standard deviation (also displayed in Figure 3). Nevertheless, the

curve indicates a definite correlation between the two indices confirming the potential of
the cr~V/@V ratio to be a good vegetation index.

The question is how to decide which level of the CT~,/Cr~V ratio above which the area

vegetation cover is too thick for the inversion to apply. The inversion algorithm was

tested over a scene for which the soil moisture was known to be uniformly saturated as

the data were acquired following an intense rainy period. Blindly app] ying the algorithm

to all pixels in the image indicated that for the vegetated areas in the image, the algorithm

underestimated the moist ure. Furthermore, the areas where the algori t}~m predicted drier
conditions were well correlated with areas with high I -band  cr~,/cs~V ratio. We found

that masking out the areas for which the L-band cr~v/o~v ratio is greater than -11 dB,

results in a soil moisture image in which the algorithm estimates consistently wet

conditions everywhere. No further tests could be done to validate this result over other

scenes and different vegetation types by lack of ground truth. } lowcver, it is in
agreement with other related studies. For bare surfaces, the &/cr~v  ratio was shown to

saturate at around -10 dB for surfaces with kh >3 [10]. Therefore, if we mask areas with
the ratio CJ~,/CJ~v  larger than -11 dB as too heavily vegetated fc)r the algorithm to apply, it

follows that few bare surfaces would be masked out and be mistaken for vegetated

surfaces. Those bare surfaces that are mistaken as being too heavily vegetated will most

likely be too rough (recall that we prefer to apply our algorithm to surfaces with kh < 2.5)
to provide accurate results. As an aside, note that according to Figure 3, the cr~v/o~,

ratio is only sensitive to vegetation for NDV1 larger t}~an 0.2. A ratio cr~,/cr~,  of -11 dB

corresponds to an NDVI of 0.4 (see Figure 3). This a~,ain indicates that the co-polarized

channels are less sensitive to vegetation than the cross polarized channels, and that the

inversion could be applied to surfaces with NDV1 as high as 0.4.

V. EFFECT OF CALIliRA’I’JON ERRORS

Two different calibration requirements on the radar system need to be considered: the

absolute calibration and the relative calibration. An al)solute  calibration error can be
modeled as a multiplicative factor affecting both OL and o; . A relative calibration

error can be modeled as a multiplicative facto] to,bc a~)plied  to CJ~A/O~v.
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To assess the calibration requirements on the radal system, one may consider a

surface with a known RMS height and soil moisture (dielectric constant). l’he
corresponding cr~~ and o~v can then be computed using (1) and perturbed by the

calibration errors as follows:

(8)

where Ca is the absolute calibration error and C, is the relative calibration error. The

values of 6° can be used to compute an estimate soil moisture and surface roughness to

be compared with the original soil moisture and surface roughness.

Figure 4a and 4b represent respectively how the estitnates of soil moisture pv

(derived from 6L and ~~V) vary when an absolute (with C, =:0), relative (with C~=O)

calibration error is introduced for different incidence angles, These  Figures show that the

inversion is more robust lo calibration errors at larger incidence angle: the error

introduced by the same calibration error results in a larger error in the estimation of the

soil moisture at 30° than at 60°. The error is also more sensitive to relative than absolute

calibration. An error in the soil moisture estimation of 3.5% at 45° corresponds to a 0.5

dB error in the relative calibration or to a 2 dB absc)lute calibration error.

The fully-polarized JPL/NASA  Airborne SAR system AIRSAR operates at C-, L- and

P-bands [25]. The SIR-C SAR is a spaceborne imaging radar operating at C- and L-band

with a full polarization option. Both systems are producing calibrated images as standard

products, The absolute and relative calibration accuracy obtained for each sensor are

listed in the Table 3 [26,27 ,28] For the SIR-C sensor, the evaluation of the calibration

accumcy  is still in progress and the pre-mission calibration requirements are listed in the

table, although early results indicate that the requirements will be met by the data. The

validity of these numbers covers all the scenes and it does not require the presence of in-

scene calibration targets, The comparison of Figure 4 and Table 3 indicates that the

calibration requirements dictated by the inversion for a 4% accuracy in soil moisture

estimate are met by both the AIRSAR and the SIR-C sensor, except for the P-band

AIRSAR data. It should therefore be possible to derive accurate soil moisture maps for

the data provided operationally by these sensors,
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V]. SAR DATA INV}lRSION

The inversion technique was applied to AIRSAR and SIR-C images. For both
datasets, the images were first segmented into two classes according to the cr~V/cr~V ratio.

The inversion was applied to the class corresponding to the sparser vegetation cover, i.e.,
for which the cr~,/cr~v ratio was less than -11 dB. The inversion was applied to the L-

band data only. For sparsely vegetated fields, the vegetation is known to be more

transparent at L-band than at C-band and P-band calibration is not quite good enough to

provide reliable soil moisture maps.

The inversion technique was first applied to Washita’92  AIRSAR  data. The

Washita192  [29] and Washita ’94 are field campaigns designed to provide ground truth

soil moisture data and the supporting hydrologic data for microwave remote sensing

algorithm development and hydrologic studies with a focus on remotely sensed soil

moisture. The USDA ARS Little Washita Wtitershed was selected for these efforts

because of the extensive hydrologic research that has been conducted therein the past,

and the ongoing hydrologic data collection efforts. T}le Little Washita  Watershed is a

610 square km drainage basin situated in the southern part of the Great Plains in

southwest Oklahoma. The climate is classified as moist and subhumid  with an average

annual rainfall of about 640 mm. During the field campaigns, extensive soil moisture

measurements were taken, surface roughness data obt:iined,  and vegetation cover was

characterized and sampled. Washita’92  was a multisensory Aircraft Campaign (MAC)

conducted from June 10 to June 18, 1992. The observations followed a period a heavy

rain so that the conditions on June 10 were very wet with standing water and saturated

soils fairly common. No further rain fell during the next nine days and we were able to

follow a drying pattern. SAR data were collected wit]] the JPL AIRSAR,  flying on a DC-

8 aircraft. Aircraft and extensive field data were collected each day during this period

except for June 15 which was an aircraft crew rest day.

l’he area covered in Figure 5 is around 8 km by 10 km. It was imaged by the

AIRSAR system on six different days between June 10 and June 18, 1992. The six L-

band images were processed by the AIRSAR operatiol]a]  processor providing calibrated

data sets. All the images, initially in slant range projection were transformed into a

ground range projection [30] and the five successive data sets were registered to the June

10 data take [31] to allow an easy comparison. An L-band hh irnagc is displayed at the

lower right corner. The AGO02 bare field is outlined in the image. “l’his  field was

extensively studied during the experiment. The six color images were obtained by
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inverting the L-band data acquired on the corresponding days. ‘l’he dielectric constant

maps were translated into soil moisture maps using the Hallikainen  empirical curves [14].

The black areas in the soil moisture maps indicate areas where the vegetation cover is too

thick for the inversion to be reliable. The blue areas correspond to the wettest conditions,

the yellow areas to dry conditions and the green areas to intermediate soil moistures. The

sequence of soil moisture maps clearly shows the drying occurring during the eight days,

i.e. the color of the soil moisture map is changing towards the yellows. The scatter plot is

a comparison between the in-.!itu measurements and the estimated values of soil moisture

over the AGO02 field. If the algorithm was perfect, tile points WOUIC1  fall on the diagonal

dashed line. The RMS error of the soil moisture estimate is 1.696. It is noteworthy that

the top of the soil moisture maps have a band where the soil moisture is significantly

greater than in the rest of the image. It corresponds to an area for which the incidence

angle is less than 30° and where the inversion is not working optimally.

In Figure 6, the RMS height maps corresponding to the six datatakes described in the

preceding paragraph are displayed. As expected, the 6 maps are similar and indicate no

trend in roughness changes. The scatter plot shows a good agreement between measured

and estimated RMS heights with an RMS error of 0.15 cm. In the right part of the top

half image of the June 18 roughness map, a rough (red) rectangular field is clearly visible.

This field appears smooth (blue) on the five preceding dates and it is suspected that this

field was plowed between June 16 and June 18.

Washita’94 was an aircraft and shuttle experiment that occurred between April 9 and

April 18 in which the shuttle took data on April 11 through 17 and the AIRSAR on April

10 and 11. Two of the sampled fields where data is already available are in the radar

scene and meet the low vegetation criteria described earlier. The results from the

inversion are included in Table 4 both for SIR-C and for AIRSAR, We note that

AIRSAR derived soil moistures are very close to the SIR-C derivecl  values. The

measured roughness for Field 12 and Field 15 are not yet available. SIR-C acquired data

again over the same area on April 15, 1992. Figure 7 displays the soil moisture map

derived from the two SIR-C data sets both calibrated with the same calibration factors.

Between April 10 and April 15, no rain occurred in the Chickasha  area and the fields

dried considerably from a 20% down to a 10 % soil moisture, Figure 7 clearly shows the

drying trend between the two datasets.

The soil moisture inversion algorithm was also applied to an Al RSAR dataset

acquired over Spain in the summer of 91. The data acquisition campaign was part of the
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Hydrological and Atmospheric Pilot EXperin~ent  (HAPEX) of the ]luropean  project on

C~imate  and 1 hydrological Interactions between vegetation, Atmosphere and Land

surfaces (ECIIIVAL)  [321. The ECHIVAL Field Experiment in IIesertification

threatened Area (EFEDA) main objective was to study the land-atmosphere-vegetation

interactions in a semi-arid climate. It took place in an agricultural area west of Albacete,

“La Mancha, Spain. The AIRSAR data were acquired on June 19, 1991. At the same

time, a large ground truth effort was taking place in the area [33]. ‘1’hree of the sampled

fields are in the radar scene and meet the low vegetation criteria described earlier. The

results from the inversion are included in Table 4.

Table 4 summarizes the validation study of the inversion by listing all the in-situ

measurements of soil moisture and surface roughness when available compared to the

SAR estimated values. Figure 9 displays the estimated soil moisture versus the measured

value. The overall RMS error indicates that soil moisture can be estimated in percent

within +3.5%.

VII. CONCLUSIONS

We presented an empirical algorithm to infer soil moisture from imaging radar data

over bare surfaces using two co-polarized radar cross-section measurements. The

algorithm was developed with scatterometer data, and tested with several data sets

acquired with the AIRSAR system, and we also presented the first soil moisture images

derived from spaceborne SIR-C SAR data. A comparison with in situ data shows that the

algorithm infers soil moisture with an accuracy of better than 4 %. Best results are

achieved when the surface roughness is such that kh <2.5  (1 O cm RMS height for L-

band) and the incidence angle is larger than 30 degrees.

We also quantified the calibration requirements of [he algorithm. If soil moisture

must be retrieved with an accuracy better than 4 %, the radar data nmst be calibrated to

within 2 dB absolute and 0.5 cIB relative between the two co-polarized c}lannels;  current

operational multipolarization SAR systems such as AIRSAR  and Slf<-C  routinely deliver

images that meet or exceed these calibration requirements. Using an NDV1 image

derived from SPOT data, we showed that the algorithm can be. ap~)lie.d successfully to

areas with NDVI up to 0.4 when using L-band data. We also presented evidence that the

ratio of the cross-polarized return to the like-polarized return could be used to decide

which areas the algorithm can be applied to. This will be especially useful for those data
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sets where cloud cover prohibits the acquisition of visible and infrared data, and where

consequently no NDVI data will be available.

The results presented in this paper demonstrates that soil moisture can be measured

from space using multipolarization  SAIL Although the current algorithm is only

applicable to bare and sparsely vegetated areas, work is continuing to extend the

algorithm to areas with more vegetation. If such a mllltipolarization  SAR system could

be placed in earth orbit, our results indicate that long- term global soil moisture

monitoring can be a reality. This will provide one of the most important inputs into

global climate models and could significantly improve our understanding of the Earth’s

changing climate.
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Table4

Mv
Data Measured Mv Estimatec h Measured h Estimated

Scene Sensor Take Date Field ID [’?40] [ % ] (cm) (cm)
CHICK4SHA AIRW3 3902 6/1 0/92 AGO02 28.7 29.2 1.19 1.18
CHICKASHA AIRSAR 3664 6/1 2192 AGO02 22.4 21.15 1.19 1.35
CHICKASHA mSAR 3359 6fl 3192 AGO02 24.1 23.5 1.19 1.09
CHICKASHA AIFZSAR 3875 6i14192 AGO02 18.1 19.4 1.19 1.19
CHICKASHA AIRSAR 3883 611 6/92 AGO02 13.6 16.95 1.19 1.24
CHICKASHA AIRSAR 3360 6118192 AGO02 11.6 12.1 1.19 1.45

l~H;~KAsHA ‘ARARj 4040 [ 6 / 17 /92 ‘ AGO02 ‘ 17.5 ‘ 18.5 ‘ 1.19 ‘ 1.45 ‘
CHICKASHA AIRSAR I 4041 ] 6/13/92 AGO02 24.1 27.4 1.19 1.38

CHICKASHA AIRSAR Mosaic 6/1 3/92 RG148 27.6 30.6
CHICKASHA AIRSAR Mosaic 6/1 3/92 RG131 29.2 34.5

I
1 1 [ I r

CHICKASHA~  AIRSAR 4254 ] 4/12/94 I Field 12 18.4 24.5 1.58
‘cH!cKAsHA~  ARSAR 4254 \ 4112194 ‘ Field  15 24.8 21.8 0.86

EFEDA AIRSAR 3146 6113190 Field 2 3.4 6.9 1.41 1.34
“W”@A AIRSAR 3146 6/1 3190 Field 4 30.6 22.8 0.6 0.9
EFEDA AIRSAR 3146 6113190 Field 5 18.6 18.2 1.79 0.8

I I

Urllwv-mrq 0 nw I Iw loo
(

ICHICKASHAI  .SIFW I 10155
CHICKASHA[  SIRC 10158 +/ I.JIV+ \ ritjlu  IL Y.Y Id. cl L

CHICKASHA]  SJRC 10158 4/1 5/94 I Field 15 12.5 11.8 1.5
I I I 1 I I I I

RMS -RI I 3.32039154/ I 0.34172025
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